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Abstract-Localization and dissipation in a nonlocal strain softening bar are investigated analyti­
cally. A nonlocal elastic-plastic model consistent with thermodynamic theory is proposed. The flow
rules of nonlocal associated plasticity are derived by invoking a generalized form of the principle of
maximum dissipation in classical plasticity. Analytical solutions are derived for a linearly strain
softening material. The relationship between nonlocal characteristic length and width of localized
zone is elucidated, A comparison with results obtained from corresponding gradient approach is
presented. © 1997 Elsevier Science Ltd.

I. INTRODUCTION

Localized failure in a rate-independent material is associated with material instability.
Mathematically, in static or quasi-static problems, the onset of localization results in loss
of ellipticity of the governing partial differential equations. Accordingly, post-localized
phenomena cannot be described within the framework of classical continua. Considerable
interest has been directed at theories that treat localization as a bifurcation from a state of
homogeneous deformation. Such an approach-see Miehe and Schroder (1994), for exam­
ple, for a recent survey-is not adopted in the present paper, however, but strain fields are
assumed to remain continuous everywhere.

From a computational point of view, the loss ofellipticity leads to numerical instability
and mesh sensitivity. Ifconventional continuum models are applied, finite-element solutions
show non-objectivity with respect to the mesh for standard finite elements. As a conse­
quence, the localized zone shrinks into a region of vanishing volume under zero energy
dissipation when the elements tend to become infinitely small. Objectively can be achieved
by different approaches, e.g., by one involving the concept of localization limiters that force
the localized zone to have a certain minimum finite size (see Belytschko and Lasry (1989)
for a survey). Cohesive crack models represent simple examples of the use of localization
limiters. Such models are used widely by researchers within the field of fracture mechanics;
for a recent review, see Elices et al. (1993).

A general form of localization limiters can be utilized within the theory of nonlocal
continua. Nonlocal models for localized failure based on theories of either plasticity or
damage (or a combination of both) have been employed rather frequently during the past
decade. Plasticity-based models have been proposed by Baiant and Feng-Bao Lin (1988)
and Nilsson (1994). Damage-based models have been proposed by Baiant and Pijaudier­
Cabot (1988), Baiant and Oibolt (1990), Murakami et al. (1993), and-based on bifur­
cation analysis-by Leblond et al. (1994) and Pijaudier-Cabot and Benallal (1993), (Con­
tributions of several other authors could be mentioned as well; the list is in no way
complete.)

In addition to the nonlocal continuum approach various other continuum models are
applicable to describing localized failure. Rate-dependent models have been proposed to
eliminate problems due to change of type of differential equations (from hyperbolic to
parabolic or elliptic in the case of strain softening materials), e.g., by Sandler and Wright
(1984), Needleman (1988), Loret and Prevost (1990) and Sluys and de Borst (1992).
Localized failure has likewise been investigated within the framework ofcontinuum models,
both for materials with gradient effects (recently by Muhlhaus and Aifantis (1991), de Borst
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and Miihlhaus (1992), Fleck et at. (1994) and many others) and for Cosserat media (I~.g.,

by Miilhaus and Vardoulakis (1987), de Borst (1991) and Steinmann (1995)). One should
also note that various micromechanics models have been proposed for the analysis of
localized failure in different types of heterogeneous solids and composite materials; ~Dr a
review, see e.g., Nemat-Nasser and Hori (1993).

One-dimensional strain softening has been analyzed by a large number of authors,
using the one approach or the other of those just referred to. Indeed, many strain softening
models intended for three-dimensional problems probably represent extensions to three
dimensions of a physical understanding and of mathematical representations applying
originally to one dimension. Although such extensions generally cannot be considered
unambiguous, it surely can be argued that one-dimensional considerations usually suffice
for exposing the essential features of the phenomena that are expected to be predicted by
the theory in question. Also, needless to say, analytical solutions have with few exceptions
been found only for one-dimensional problems.

A number of authors have used a gradient approach for finding analytical solutions
to the problem oflocalization in solids, among these Aifantis (1984), Coleman and Hodgon
(1985) and Triantafyllides and Aifantis (1986), and more recently Schreyer (1990) and de
Borst and Miihlhaus (1992). Due to the complexity of the corresponding nonlocal approach,
the issue of finding analytical solutions to problems of localization is not an easy one.
Among those who have endeavoured to find such solutions are Bazant and Zubelewic
(1988), Valanis (1991) and Brekelman (1993) (the work of each of them being based on
damage theory).

This paper is organized as follows. In Section 2 a nonlocal model consistent with
thermodynamic theory is formulated and the flow rules of nonlocal associated plasticity
are derived from a generalization of the principle of maximum dissipation. In Section 3 a
strain softening bar loaded in uniaxial tension is investigated analytically. An integral
equation from which the width of the localized zone can be obtained is derived. Also, the
role of characteristic lengths of a nonlocal continuum is discussed. In Section 4, finally, the
question of uniqueness of the solutions is addressed, a comparison is made with gradient
theory, and various concluding comments are offered.

2. NONLOCAL PLASTICITY

Classical continuum mechanics is based on the principle of local action and on the
assumption that the equations of balance are valid for every part of a given body, hOWi~ver
small it may be. The principle of local action is not valid in nonlocal theories, however. For
example, stress is affected not only by an infinitesimally small region around the actual
stress point, but by the entire body in question. Continuum theories including such long­
range interactions have been in the focus of interest now for over twenty years; see e.g.,
Kunin (1982,1983), Gurtin and Williams (1971) and the review by Edelen (1976). Common
to nonlocal theories is the postulation of balance equations for a given body in its entirety
(global equations) and not for just an arbitrary part of it. Corresponding local equations
are only valid then after the incorporation of nonlocal residuals which account for the long­
range interactions. There is no unique approach, however, to the problem of describing
nonlocal interactions in continuous media. An entirely different approach to nonlocality is
one based on micromechanics of heterogeneous materials, according to which the nonlocal
effects manifest themselves when the appropriate classical field equations are solved; see
Hashin and Shtrikman (l962a, b), Willis (1981), Nemat-Nasser and Hori (1993), and the
nonlocal formulation concerning elastic composites presented recently by Drugan and
Willis (1996). Theories of nonlocal plasticity have been developed by Eringen (1981, 1983),
Nilsson (1994) and-based on crystal plasticity-by Berveiller et at. (1993). The nonlocal
approach employed in the present paper is similar to that of Edelen (1976).

Nonlocal constitutive variables will be constructed here from a set of basic state
functions, constituted by total strain, plastic strain and a scalar measure of strain hardening
(Section 2.1). A rate-independent model consistent with thermodynamic theory, in which
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stress and free energy are assumed to be functions of the nonlocal variables, will then be
formulated (Section 2.2).

A yield function, in which the same set of nonlocal independent variables occurs as in
the case of the response functions of stress and free energy will be introduced. This is
fundamental for the theory. In classical plasticity the yield condition implies that whether
a state is elastic or plastic depends only on the inelastic state at the actual stress point and
not on the state at neighbouring points, hence excluding any dependence on the gradients
of the inelastic variables. From a physical standpoint, however, it is difficult to find support
for rejecting, as Eringen (1981) did, long-range interactions in the yield criterion in nonlocal
plasticity; cf. the paper by Kratochvil (1988), in which nonlocality and the microstructural
origin of plastic deformation are discussed.

Statements of the Second Law of thermodynamics (such as the Clausius-Duhem
inequality) are often replaced in local and purely mechanical plasticity theory by a work
assumption of some kind, such as the postulate of Drucker (1952) or that of ll'iushin
(1961). Drucker's postulate, concerning the non-negativity of work in a cycle of stress, is a
stability condition that is valid for hardening materials only, whereas the restrictions that
the invoking of ll'iushin's postulate, which concerns a strain cycle, place on the constitutive
equations are valid for both hardening and softening behaviour. From the postulate of
either Drucker or ll'iushin, each formulated within the context of linearized theory and
small deformations, conditions for normality of plastic strain rate and for convexity of the
yield surfaces can be obtained. In nonlocal plasticity it is not possible to derive such
conditions from any generalized postulates of the Drucker or ll'iushin type. However, it
will be shown that it is in fact possible to derive the flow rules of nonlocal associated
plasticity by invoking a generalized form ofthe principle of maximum dissipation in classical
plasticity (Section 2.2.2).

2.1. Attenuationfunctions
The basic functions (state functions) that are assumed to constitute the elastic-plastic

state are represented by e(x, t), eP(x, t) and K(X, t), which represent total strain, plastic strain
and strain hardening, respectively, as was discussed previously.t Thus, one can see that, in
contrast to local theory, these functions-and not simply their values at x-are required
for specifying the dependent variables. In the case of Helmholtz free energy t/J, this means
that the value of t/J at x is determined by the values of the state functions over the entire
body. In order to provide for such dependence the following quantities are constructed:

<e)(x, t) =~() rwe(lz-xl)e(z, t) dV(z),
Ve x JB

<eP)(x, t) = -~() f wI'(lz-xl)eP(z, t) dV(z),
Vp X B

<K)(X, t) = Vh~X) In wh(lz-xl)K(Z, t) d V(z) ,

where Vi, i = (e,p, h) are defined by

VJx) = In w'(lz-xl) dV(z).

(I)

(2)

Here we, wi' and whare scalar, time independent attenuation or influence functions, depending
on position as indicated, by which representative volumes V" Vp and Vh, that are charac­
teristic measures of body B of volume V(B), are constructed. On the basis of physical
considerations, it is reasonable to assume that the attenuation functions decay smoothly

t Standard vector and tensor notations are employed, the bold letters denoting vectors and second order
tensors.
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and rapidly with increasing distance from x, as is the case when we, wi' and wh are assumed
to be of exponential form. It is evident that the nonlocal feature of a given material
behaviour is affected considerably by the choice of attenuation functions. It is assumed that
the attenuation functions are normalized, we(O) = wI'(O) = ~(O) = 1. For the moment, it is
not necessary to specify the attenuation functions further. Before continuing, it is convenient
to introduce some new notations. Define the functions wi(z, x) and wi(x, z), using the
relationship

and

.1.
w'(z,x) = V(x) w'(lz-xl)

.1.
w'(x,z) = V(z) w'(lx-zl),

(3)

(4)

respectively, where i stands as before for either e, p or h. Braces are used to denote the
averaging operator

valid for every scalar, vector or tensor valued function Q.
The function SB wi(x, z) d V(z) is denoted simply as P\ i.e.

pi = fa wi(x,z)dV(z) = TIL

where the second equality follows from (5).
From (2) and (3) it follows that Wi satisfies the normalization condition

and that (1) can be replaced by

<1l)(X,t) = fa we(z,x)ll(z,t)dV(z),

<ll")(x,t) = fa W'(z,x)lf(z,t)dV(z),

<K)(X,t) = In wh(z,x)K(z,t)dV(z).

(5)

(6)

(7)

(8)

Remarks 2.1. Here z is used to indicate functional relationship in the sense that z
represents all points in the body, whereas x represents an arbitrarily distinguished point.
When no confusion can result, the dependence of the arguments on x and t is omitted.

It should be emphasized that <-) is a function symbol not to be confused with the
notion of averaging a function.

The quantities ll, If and K are referred to as local variables, whereas the corresponding
quantities <ll), <If) and <K) are referred to as nonlocal variables. Thus, for example If is
local plastic strain and <If) is nonlocal plastic strain.
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Note that if one takes w = [) (the Dirac delta function) in (1), it follows from (2) that
V(x) = 1, and hence that the original state function is recovered.

Note also that, due to the normalization condition (7), nonlocal quantities become
identical with corresponding local ones during homogeneous motion. 0

2.2. Thermodynamic basis
Assume now that

t1 = ~«£), <tf), <K»),}
IjJ = 1jJ«£), <tf), <K»).

In a purely mechanical theory the second law of nonlocal thermodynamics reduces to

L(-riJ+t1·t) dV ~ 0,

(9)

(10)

the superposed dots denoting material time derivatives. Note that, because of (8) and (9h
the time derivative of the Helmholtz free energy can be expressed in the form

riJ = ~o<~). rwe(z, x)t(z) dV(z) + o~ .i wP(z, x)8P(z) dV(z)
u £ JB o<tf) B

+ o~~) LwJ'(z, X)K(Z) dV(z), (11)

allowing the second law (10) to be written as

- r[r W(z, x) ~o<~)(X). t(z) d V(z) + rwP(z, x) o~ (x)· if(z) d V(z)
JB JB U£ JB o<tf)

+LwJ'(z, x) o~:) (X)K(Z) d V(z) ] dV(x) +Lt1(x)· t(x) d V(x) ~ O. (12)

Observe that interchanging x and z and reversing the order of integration in (12) allows, in
view of (5), the second law to be cast in the form

(13)

The inequality (13) must hold during both loading and unloading. Since unloading cor­
responds to vanishing if and K for any value of £ inside some bounding surface (the elastic
region in strain space), and since the inequality is linear in t, it follows that

(14)

during unloading (or neutral loading). Note that t1 is evaluated at fixed but arbitrary values
of the inelastic variables. Accordingly, (14) is valid for every £P and K. Hence, since t1 is
independent of if and K, the result given by (14) remains valid during loading as well.
Substituting (14) back into (13) then yields



4404 C. Nilsson

i [ {atf/ } { atf/} ]- -- oif- -- K dV>- 0
B a(lf') P a(K) h 7,

(15)

the left hand side of the inequality being an expression of the total plastic dissipation [DP in
the body, i.e.

[DP = r [- {-~} oif-{~} K]dV
JB a(lf') P a(K) h

= r [_ atf/ .(if)- atf/ (K)]dV,
JB a(lf') a(K)

where the second equality is a trivial consequence of (12) and (13).

(16)

Remarks 2.2. It is not difficult to formulate the theory for elastic-plastic bodies under­
going finite deformation. However, to avoid unnecessary complications, here 8 can be
identified as infinitesimal strain and u as actual (Cauchy) stress. Accordingly, x and z can
both be interpreted as the position of a material point in some reference configuration. D

2.2.1. Restricted nonlocality. In many cases, it is essential that stress rather than strain
be used as an independent state function. In general, it appears more or less impossible to
invert the stress-strain relation (9)1 in order to establish the strain at the actual stress point
as a functional of the stress distribution of the body. If nonlocal strain is replaced by its
local counterpart in (9)[, however, it then becomes reasonable to assume that under some
mild conditions the stress-strain relation is invertible. This makes the case of restricted
nonlocality in which total strain is forced to remain local of particular interest. Note, in
view of (2) that, if one selects as the attenuation function we a Dirac delta function, both
(3) and (4) reduce to

we = 15,

and hence, in view of (8) [, that

(8) = 8,

and that the constitutive assumption (9) becomes

u : ~(8, (8:), (K»,}

IjJ -1jJ(8, (8 ), (K»,

whereas, in view of (5), that (14) becomes

(17)

(18)

(19)

(20)

Clearly the form of restricted nonlocality appearing in (19) I legitimates the assumption
that, within a certain range (defined by a prescribed yield criterion), jj possesses an inverse
of the following form:

8 = s(u(lf'), (K». (21)

Apparently, we have made a decision regarding the level of generality here, since the choice
of (17) restricts the theory considerably.
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2.2.2. Principle of maximum dissipation. To illustrate the basic problems associated
with the strain softening bar, it is sufficient to consider the simple case in which

(22)

where !f is the tensor of elastic constants and H the plastic modulus (less than zero if the
material exhibits softening behaviour). Note that (22) is in agreement with the general
assumption (19h and that (20) then becomes

arj!
(1 = !f(8-(e"») = --­

a(e") ,
(23)

where the second equality follows from (22) and (23)1' Using (23), the plastic dissipation
(16) takes the form

with q defined as

![])P = fa [{(1}p"tP + {qhK] dV

= fa [(1" (tP)+q(K)] dV,

arj!
q = - a(K) = -H(K).

(24)

(25)

Apparently (1 and q are generalized forces conjugated to the nonlocal variables (e") and
(K), respectively.

If

(26)

is defined as being a measure of specific plastic dissipation (dissipation at unit volume), one
can treat

(27)

as a localized form of the dissipation inequality, one which corresponds to a vanishing
nonlocal residual (Edelen (1976)). Since the inequality (27) implies (IS), this is a sufficient
(although, of course, not a necessary) condition for the second law (10) to hold true.

If one assumes that (27) is valid for every set {£P, k} at a given elastic-plastic state
(8, e", K}, the flow rules of nonlocal associated plasticity can be derived by invoking a
generalized form of the principle of maximum dissipation in classical plasticity (Hill
(1948)).t Recall that a normality condition for plastic strain and an associated condition
of the convexity of the yield surface are the only restrictions placed on the constitutive
equations by the principle in its classical form. If the principle is invoked in a more restrictive
sense, however, further restrictions are placed on the constitutive functions, as indicated by
the following.t For a prescribed yield functionf, define a set A of admissible states

A = {«(1, q) If«(1, q) ~ O},

and require for any given {£p, k} that

t By Hill credited to von Mises (1928).
t In the case oflocal plasticity, a similar argument is used by Simo (1988).

(28)
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(29)

for every possible state {u, q} EA. Thus the principle claims that the actual state is the one
for which the specific plastic dissipation adopts its maximum. Proceed by constructing a
Lagrangian

LP(lI,q,Y) = -DP(lI,q;if,K)+Y!(lI,q), (30)

where y~ 0 is a Lagrangian multiplier. The condition (29) is now enforced by solving the
associated constrained minimization problem implied by (30), i.e.,

oLP
-=0all '

aLPaq = 0, Y~ 0, y!(a,q) = 0. (31)

From (5), (6), (26), (28) (30) and (31) it then follows that

y ~ 0, !(a, q) ~ 0, y!(a, q) = 0,

(32)

(33)

where the two equations displayed in (32) are the flow rules of (nonlocal) associated
plasticity, whereas (33) represents the corresponding loading/unloading conditions (in
Kuhn-Tucker form).

If the attenuation functions w" and l0 coincide, then fJP = f3h = 13. This allows the
functions to be incorporated into t (since 13 > 0). Hence, (32) and (33) can be replaced byt

where ~ is defined as

if = i o! )oa'

. a!
K=A­

oq'

i ~ 0, !(a, q) ~ 0, i!(a, q) = 0,

i = f3y.

(34)

(35)

(36)

Remarks 2.3. The nonlocal character of the theory should be emphasized. Although
(34) along with the requirement (35) appear in a seemingly local form, both (19) and (25)
clearly reveal the nonlocal status of the flow rules and the loading/unloading conditions.
The restriction of the nonlocal formulation to local theory is obtained by simply discarding
the <> symbols and the averaging operator n wherever they occur. In the local case, the
convexity of the yield surface is a consequence of the principle of maximum dissipation, as
can be shown by the following simple argument: choose q = q in (29) and conclude, with
the aid of (26), that

t Alternatively, boundary effects can be assumed to be negligible and fJ can be set equal to unity (cf. Sl:ction
3.2).
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(a-a) "if ~ 0,
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(37)

which, in view of either (32)) or (34)1' implies convexity. In the nonlocal case, however, the
corresponding argument is not valid: the nonlocal counterpart of (37) reads

{a-a}p"if ~ 0, (38)

and, since (37) does not in general follow from (38), convexity is not implied by the
generalized principle of maximum dissipation expressed by (28) and (29).

Recall that in a corresponding local theory the yield surface is stationary when apex) = 0
and K(X) = 0 (i.e., for fixed values of sP and K at x). From either (32) and (33) or (34) and
(35) it follows then that in an elastic state the yield surface is stationary. The proposed
nonlocal formulation does not afford any such simple geometrical interpretation since,
whereas in an elastic state j;P(x) and k(x) still vanish (since y = 0), <aP)(x) and <K)(X) in
general do not. Hence, in view of (25), the yield surface is not necessarily stationary at x
but may change due to plastic deformation at other parts of the body (i.e., if(z) -:f. 0,
K(Z) -:f. 0 in some finite region). 0

3. STRAIN SOFTENING BAR

The constitutive three-dimensional formulation presented in the previous section is
rather general, restricted of course by the choice (22) of the Helmholtz free energy, but
without restrictions being placed on the yield functionj(except for the usual smoothness
conditions). In fact, a suitable choice ofjprovides for the nonlocal formulation of several
well-known models of rate-independent plasticity. Here, attention will be confined to a one­
dimensional formulation of the general theory involving the choice ofa simple yield function
corresponding to linear strain softening. From this it follows that the problem oflocalization
in the strain softening bar is easy to solve analytically.

Specifically, assume that the bar has length L = 0.1 m, Young's modulus E = 20,000
MPa (constant along the entire bar), and the strain hardening modulus H = -0.05E. The
initial yield stress is ay = 2 MPa everywhere, except for some small region in which it is
reduced by a certain given amount. The bar is prescribed to be loaded in uniaxial tension.

3.1. Elastic-plastic equations
A one-dimensional formulation of the Helmholtz free energy which complies with (22)

is chosen:

According to (23) and (39)

a = E(e-<f!»).

A yield function corresponding to linear strain softening is defined by

(39)

(40)

(41)

where it should be recalled that q = -H <K), in agreement with the definition given by
(25). If H -:f. 0, it then follows from (32) and (41) that
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(42)

where y is subjected to the requirement (33).

3.2. Localized zone
If strain softening in the bar is initiated at a point Xo where the initial yield stress is

reduced, say, to (iy = 1.4 MPa, one can assume that

y(x) = B(x)<5(x-xo),

where <5(x) is a Dirac delta function which satisfies

f
L!2

<5(x-xo) dx = 1,
-L!2

and where B is some as yet unknown function. Hence, according to (42) and (43),

B(x) )BI'(x) = --<5(x-xo),
fJP(x)

B(x)
K(X) = --<5(x-xo).

f3h(X)

It then follows from (8) and (45) that the nonlocal plastic strain rate becomes

f
LI2 B(z) B(xo)

<BI')(x) = wP(z,x)--<5(z-xo)dz = --wP(xo,x),
-L/2 fJP(z) [3P(xo)

and similarly that

(43)

(44)

(45)

(46)

(47)

In view of (35) and (43), the consistency condition of plasticity implies thatj = 0 at Xo. It
then follows, by use of (41) and (47), that

(48)

and hence, from (3) (recall that by assumption w(O) = 1), that

(49)

Using (40), (46) and (49), one can conclude that the relationship between strain rate
and stress rate becomes
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(50)

valid for all x E [ - L12, LI2].
To simplify, assume thatt J.i,R = wh = wand that strain softening is initiated at the

centre of the bar, i.e., at Xo = O. The width b of the localized zone is then

where Xb is a solution to the equation f. = 0, i.e.,

H
V(O)w(O, x) + E = 0,

according to (50). Specifically, choosing a Gaussian attenuation function of the form

it can be seen that (52) explicitly reads

V(O) _"x2/12 + H = 0 )
Vex) e E'

L/Z

Vex) = f e-,,(z-xj'/1
2 dz,

-L/Z

(51)

(52)

(53)

(54)

in accordance with (2) and (3). The solution of (54) is shown graphically for I = 0.0157 m
in Fig. 1. From (54)z one finds that

tNote that in this case (50) yields iT = EH/(E+H) t(xo), a relationship which, during loading, also follows
directly from (40)-(42) if fJI' = p.
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lim V(O) = I.
L~oo

IIL« 1,

(55)

(56)

then Vex) = V(O) almost everywhere (except for a narrow zone close to the boundary), and
(54) has approximately a closed form solution

(
1 E )1/2

Xb = ±I -In-­
TC -H

(57)

Since IlL = 0.157 here, (57) is an acceptable solution, as can easily be checked by a
comparison with the graph in Fig. 1. In particular, solving (54) gives b = 0.0314 m (::::::2l)
for -HIE = 0.05, whereas (57) gives b = 0.0307 m.

The integration of (50) (wi' = w" = w) provides the total displacement rate of the bar

!\u = u(~) - u( - ~)

= It r:/2IJ+~ V(xo)W(Xo,X)]dX = It (~+ ICh~O)).

where (6) has also been used and where

(58)

(59)

is some characteristic length which at a given point and for a given length of the bar depends
on the character of the attenuation function alone. Since the representative volume Vex)
only deviates appreciably from V(O) at the boundary, note in particular that

1 fL!2
f3(0) :::::; V(O) w(O, x) dx = 1

-L/2
(60)

for rapidly decaying attenuation functions (IlL « I). For the Gaussian distribution function
(53), it turns out that (60) is in fact accurately satisfied if IlL < 0.3, as can be seen in Fig.
2a. In this specific case (in which X o = 0), (59) is replaced by

(61)

and hence, due to (55),

(62)

independent of the length of the bar.
One can also observe in Fig. 2a that the integral of w(O, x) deviates from unit value by

only a small amount. Accordingly, it can be argued that (60) is valid even if (56) is not
valid. The case in which Xo is an arbitrary point along the bar is illustrated in Fig. 2b, in
which the function Ich(xo)IV(xo) = Jw(xo, x) dx is shown for five different values of the
quotient IIL. For small values of IlL (rapidly decaying Gaussian attenuation function), one
can observe that the integral of w(xo, x) only deviates from unity in small regions close to
the boundaries.

The stress-displacement relation is obtained from (58)
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Fig. 2. Characteristic length Ie. with respect to Gaussian attenuation function. (a) The function
Ic.1 V(O) = Jw(O, x) dx. (b) The function 1,·.1 V(xo) = Jw(xo, x) dx for five different values of quotient

IlL.

a=

Lay
0< A.u<E'

Lay
A.u>E'

(63)

and is shown in Fig. 3a for I = 0.0157 m and Xo = 0 (ay then being the reduced initial yield
stress at the centre of the bar).
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Fig. 3. Stress and strain (Gaussian attenuation function). (a) Stress versus total displacement
(IlL = 0.157). (b) Strain distribution along the bar for three different values of total displacement

(IlL = 0.157).

The strain distribution for different values of the total displacement of the bar are
obtained from (50) and (51). The result (for Xo = 0) is shown in Fig. 3b for values of stress
corresponding to Au = (0.8, 1.0, 1.2) x 10-5 m.

For IIL = 0.157 the width of the localized zone has been calculated by numerically
solving the integral eqn (54) for different values of - HIE. In particular b = 0.0314 m (::::; 21)
if - HIE = 0.05, which is verified by the strain distribution shown in Fig. 3b. As expected,
the width of the zone remains constant when the loading is increased.
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Remarks 3.1. The analysis above highlights the difference between permanent defor­
mation and plastic flow in general nonlocal plasticity. Recall that the stress point never
reaches the yield surface except for the single point at xo. Yet it appears to clearly be the
case that permanent deformation remains within the entire localized zone if the stress is
relaxed to zero. However, in the special case of restricted nonlocality in which wi' = b =1= »!'
(and hence Vp(x) = P(x) = I as seen from (2), (4) and (6)), the plastic strain remains local
and (50) becomes

(64)

Thus the strain is localized in a zone of vanishing size at Xo, whereas the total displacement
(58) remains unaltered, being discontinuous at Xo, with a jump in magnitude of (iJIH)lch

(since Ich does not depend on wI', as can be easily seen from (50), (58) and (59)). It may then
be argued that use of a nonlocal model in which the attenuation function wi' is chosen as a
delta function supports the concept of a cohesive crack model, as has been discussed
recently by Planas et al. (1993, 1994). 0

3.3. Identification ofnonlocal characteristic length
In the case discussed in Section 3.2 in which wi' = wh (cf. (52) and (54)), the width of

the localized zone (for given L) depends specifically on the quotient HIE and the constitutive
parameter I (referred to by some authors as simply the nonloeal characteristic length of the
material). It is evidently ofconsiderable importance to relate this parameter to the physical
properties of the material. Taking account of the dissipation in the bar provides an interpret­
ation of I (associated with the attenuation function wh

), as will be demonstrated below.
The total dissipation in the bar is obtained from either (24)1 or (24)2' Using the second

alternative, it follows with the aid of (46), (47) and (25) that

(65)

where the second equality is due to (6), (49) and the fact that (J does not depend on x. In
view of (49), the integration of (47) (with properly chosen initial condition) gives

(66)

and hence, using definition (59),

(67)

where

(68)

is another characteristic length, and where wrefers to the strain hardening function K (the
superscript h being suppressed).
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Remarks 3.2. It should be noted that (67) implies that [DP does not depend on wp•

Hence, the dissipation remains nonzero, even when wi' = J.
It should also be noted that the dissipation inequality (15) places no restrictions upon

the attenuation functions since each term in the right hand side of (67) is non-negative.
Furthermore, the condition (33)2 implies that

(69)

as can be seen from (65), (41) and (6)):

(70)

which, in view of (49), is (69).
In addition, it can be noted on the basis of (67) and (69) that the characteristic lengths

lch and l~ must fulfill

(71)

an equality trivially satisfied for an attenuation function of the Gaussian type (for which
w(xo, x) attains its maximum value at x = xo) :

(72)

where advantage has been taken of the definitions of lch and l~h «59) and (68), respectively)
and of (3) together with the fact that w(O) = 1. 0

At failure (complete separation of surfaces), the total amount of dissipation is given
by 2Ge> where Gc is the fracture energy per unit area for the specimen in question. Hence,
since (J = 0 and tJ = - (Jy at failure,

2

~l* -2G-H ch - n
(73)

which for an attenuation function of type (53) is an integral equation for the parameter I
(for given values of Xo and L).

If one assumes that Gc represents a true material property (neglecting any size effect)
(73) can be written in the formt

-H
(74)1* --Ach - E n

where

A = 2GcE (75)
c 2

(Jy

is a characteristic length of the material, commonly used by researchers in the field of

t It is tacitly assumed that neither cry nor E depends on the size of the specimen.
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fracture mechanics (see Hillerborg et al. (1976». The parameter I can then be explicitly
determined from (74). Choosing Xo = 0 and assuming that (56) is valid, it is found, in view
of (53), that approximately

(76)

and hence that

(77)

Remarks 3.3. For 1= 0.0157 m, -HIE = 0.05 (cf. Fig. 1), it can be seen from (77)
that Icc::::: 0.22 m, which appears to be a typical value for mortar. Stable experiments on
strain softening specimens (displacement controlled measurements) require that Ac > L (see
e.g., Hillerborg (1989». Since L = 0.1 m here, this stability condition is fulfilled.

It should also be noted that (71) and (74) together imply that 1~(-HIE»)"c for any
attenuation function which satisfies (62) (verified above by (77) for a Gaussian attenuation
function). 0

4. DISCUSSION AND CONCLUSIONS

To be discussed below are the question of the uniqueness of the equilibrium solution
of the elastic-plastic equations (Section 4.1), and the nonequivalence between nonlocal
plasticity and gradient plasticity (Section 4.2). Various concluding remarks are also pro­
vided (Section 4.3).

4.1. Uniqueness ofequilibrium solution
In Section 3.2, strain softening was assumed to be initiated at a single point xo, forcing

the flow rules to satisfy (45). Here it will be shown that (45)2 in fact represents the only
nontrivial equilibrium solution of the elastic-plastic equations-at least for a particular
class of attenuation functions.

It follows from (41) and the consistency condition of plasticity that during plastic
loading

f
L I2

d' = H -L/2 w(z, X)K(Z) dz, (78)

where w(z, x) refers to the strain hardening function K (the superscript h being omitted).
Equilibrium requires that aalax = 0 and hence thatt

ad'
ax = o.

One trivial solution of (79) which complies with (78) is

d'
K=­

H'

(79)

(80)

which represents uniform hardening of the bar. Another solution is the one discussed in
Section 3.2, i.e.,

t For a locally mass closed body in which long range gravitational effects are negligible, the equations of
linear and rotational momentum coincide with those of local theory (Edelen (1976».



4416 C. Nilsson

. . a J(z-x) a
K(Z) = H w(x, x) = H V(x)J(z- x), (81)

which represents softening at a single point x (the second equality being due to (3)). It can
be easily shown that (80) and (81) are in fact for a wide class of attenuation functions the
only solutions to (79). If one ignores the trivial solution (80) and further assumes that

K(X) > 0 for XE [xJ,xz]

in some finite region, (79) should then require that

iX2

w'(z, X)K(Z) dz = 0,
x,

(82)

(83)

where w' is the derivative of the function wwith respect to x. Since it is easy to show that
this is not possible for attenuation functions of the type (53), (81) is the only nontrivial
solution of (78) and (79); cf. Planas et al. (1994).t

4.2. Comparison with gradient theory
Since several authors characterize gradient materials as nonloeal, it is important to

note that-according to the terminology of Noll (1958) and to that adopted in the present
paper-materials with gradient effects are not nonlocal but belong to a certain class of non­
simple materials. The fact that functionals (present in nonlocal theories) may be formally
approximated by the use of Taylor expansions does not justify the idea (adopted by
some authors) that constitutive relationships for gradient materials can be derived from
corresponding constitutive equations for nonlocal materials.

In fact, already in the results obtained in the previous section, the nonequivalence
between nonlocal plasticity and gradient plasticity is manifest. To see this clearly, note that
(55) allows one to assume that Vex) ~ I for a fixed L and for a sufficiently small I, provided
x is not too close to the boundary. Within the limits of this approximation one can express
the nonlocal strain hardening function (8)3 (after a change of integration variable) in the
form

1 foo(K>(X) = I -00 w(s)K(x+s)ds,

with

f~oc w(s) ds = I.

The consistency with local theory is evident since

lim <K>(X) = K(X),
1_0

(84)

(85)

(86)

which is easy to show for attenuation functions of type (53) ifK is assumed to be continuous.
In particular, note that the relationship

t In a slightly different context (corresponding to the special case of restricted nonlocality with wi' = ~, as
discussed in Section 3.2), Planas and coworkers have proved, for a large class ofattenuation functions, in particular
including (53), the nonexistence of an inelastic distribution over a finite interval.
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w(S) = w( -s)

4417

(87)

is valid for these functions. t
Through expanding K(X+S) in a Taylor series at x and using (85) and (87), it is then

possible to write (84) in the form

I foo ( S2 )<K)(X) = I -00 w(s) K(X) +SK'(X) + 2 K"(X) + ... ds

(88)

where ct1 and ct2 are constants (independent of f). For example, it is found that the value of
ct1 is 0.25/n if the Gaussian attenuation function (53) is employed.

It can be anticipated that a gradient plasticity model based on a yield function that
depends both on the second derivative of the strain hardening function and on the function
itself, can be derived to any desired degree of accuracy from (88) by simply neglecting all
terms of higher order (a sufficiently smalll being chosen and its being tacitly assumed that
the subsequent derivatives of K remain bounded). In general, however, such an argument
is not a rigorous one, as discussed by Huerta and Pijaudier-Cabot (1994). Here, the
uniqueness of the equilibrium solution (81) provides another proof of the nonequivalence
of non10cal methods and the corresponding gradient ones. To demonstrate this, one can
examine the gradient model derived by de Borst and Miihlhaus (1992), which is based on
the following constitutive equations:

(J = E(e-i'), )
f= (J-(Jy-HK, K = K+lGK",

if' = K = y,

(89)

where lG is some internal length. This set ofequations should be compared with the non10cal
formulation (39)-(42). Hence, one needs to select <i') = if, i.e., the special form ofrestricted
nonloca1ity in which wi' = b (recall that ph ~ 1 by assumption). Furthermore, in view of
(88), the internal length lG should be chosen as

lG = Ftl.
The equilibrium solution of (89) is represented by the plastic strain distribution

• d"
if'(x) = Acos(x/ld+ H'

(.4 being independent of x), whereas the width of the localized zone is given by

b = 2nlG'

(90)

(91)

(92)

However, as shown in Section 4.1, the corresponding nonlocal solution has the form
(81), which means that for the class of attenuation functions in question a plastic strain
distribution over a finite interval is an impossibility. Hence the two models are not equivalent
and gradient relations of the type discussed here cannot, in general, be derived from
nonlocal theory.

t It is not necessary to restrict the choice of attenuation functions to (53), since the arguments to be discussed
remain valid for a wide class of integrable attenuation functions that comply with (84)-(87) above.
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4.3. Concluding remarks
The nonlocal approach provides in a natural way for the introduction of a set of

characteristic lengths, these being the major parameters that control the development of
the localized zone, as has been demonstrated by analysis of the strain softening bar. The
analytical solution implies that the width of the localized zone depends on the length of the
bar, although this size effect is negligible if the quotient IlL is small, I being a nonlocal
characteristic length and L the length of the bar. For a given type of attenuation function
and for sufficiently small values of the quotient IIL, the width of the localized zone is
determined entirely by the parameter I, Young's modulus and the strain softening modulus.
It was found further that the analytical solution predicts a finite amount of total dissipatilon,
despite plastic loading being confined to a region of vanishing size at the centre of the bar.
Comparison with the total separation work at failure allows an integral equation to be
derived which can be solved so as to obtain the nonlocal parameter I.

The appropriate choice of attenuation functions and the physical identification of the
characteristic length (or lengths) of a nonlocal continuum are issues of great importance.
In general, they need to be dealt with by a combination of micromechanical analysis and
experimental investigation. Choosing attenuation functions properly is apparently not
simply a matter of numerical convenience but can be of decisive importance for the
localization process in general and for the final width of the localized zone in particular.
Ultimately, only experimental investigation can provide the validation of the one choice or
the other.
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